Kumo.ai home pagelogo
  • Community
  • Contact Support
  • Start for free
  • Start for free
Guide
Examples
Reference
FAQ
Releases

Model Planner Options

Fine-grained control over encoders, training strategy, and the AutoML search space.

Suggest Edits

​
Column Processing

  • encoder_overrides

​
Model Architecture

  • activation

  • aggregation

  • channels

  • handle_new_target_entities

  • module

  • normalization

  • num_post_message_passing_layers

  • num_pre_message_passing_layers

  • ranking_embedding_loss_coeff

  • output_embedding_dim

  • target_embedding_mode

  • use_seq_id

  • distance_measure

​
Neighbor Sampling

  • max_target_neighbors_per_entity

  • num_neighbors

​
Optimization

  • base_lr

  • batch_size

  • early_stopping

  • lr_scheduler

  • majority_sampling_ratio

  • max_epochs

  • max_steps_per_epoch

  • max_test_steps

  • max_val_steps

  • weight_decay

  • weight_mode

​
Training Job Plan

  • refit_full

  • refit_trainval

  • run_mode

  • metrics

  • num_experiments

  • tune_metric

​
Training Table Generation

  • entity_candidate_aggregation

  • forecast_length

  • forecast_type

  • lag_timesteps

  • year_over_year

  • split

  • timeframe_step

  • train_end_offset

  • train_start_offset

Assistant
Responses are generated using AI and may contain mistakes.
Powered by Mintlify
On this page
  • Column Processing
  • Model Architecture
  • Neighbor Sampling
  • Optimization
  • Training Job Plan
  • Training Table Generation
Get Started
  • Overview
  • Quick Start
Connect Data
  • Data Connectors
  • Connector Options
  • Select Tables
  • Column Preprocessing
  • Create Graph
Train Model
  • Predictive Query
  • Model Training
  • Model Settings
  • Evaluation
  • Explainability
Run Models
  • Batch Predictions
  • Outputs
  • Model Risk Management
Admin & Setup
  • Quotas and Limits
  • Data Processing Addendum
  • Browser
  • Deployment Options
  • SSO Configuration Guide

Model Planner Options

Fine-grained control over encoders, training strategy, and the AutoML search space.

Suggest Edits

​
Column Processing

  • encoder_overrides

​
Model Architecture

  • activation

  • aggregation

  • channels

  • handle_new_target_entities

  • module

  • normalization

  • num_post_message_passing_layers

  • num_pre_message_passing_layers

  • ranking_embedding_loss_coeff

  • output_embedding_dim

  • target_embedding_mode

  • use_seq_id

  • distance_measure

​
Neighbor Sampling

  • max_target_neighbors_per_entity

  • num_neighbors

​
Optimization

  • base_lr

  • batch_size

  • early_stopping

  • lr_scheduler

  • majority_sampling_ratio

  • max_epochs

  • max_steps_per_epoch

  • max_test_steps

  • max_val_steps

  • weight_decay

  • weight_mode

​
Training Job Plan

  • refit_full

  • refit_trainval

  • run_mode

  • metrics

  • num_experiments

  • tune_metric

​
Training Table Generation

  • entity_candidate_aggregation

  • forecast_length

  • forecast_type

  • lag_timesteps

  • year_over_year

  • split

  • timeframe_step

  • train_end_offset

  • train_start_offset

Assistant
Responses are generated using AI and may contain mistakes.
Powered by Mintlify
On this page
  • Column Processing
  • Model Architecture
  • Neighbor Sampling
  • Optimization
  • Training Job Plan
  • Training Table Generation