pip install kumoai
import kumoai.experimental.rfm as rfm, os os.environ["KUMO_API_KEY"] = "ENTER_YOUR_API_KEY_HERE" rfm.init()
import pandas as pd dataset_url = "s3://kumo-sdk-public/rfm-datasets/online-shopping" users_df = pd.read_parquet(f"{dataset_url}/users.parquet") items_df = pd.read_parquet(f"{dataset_url}/items.parquet") orders_df = pd.read_parquet(f"{dataset_url}/orders.parquet")
graph = rfm.LocalGraph.from_data({ "users": users_df, "items": items_df, "orders": orders_df, }) # Inspect the graph - requires graphviz to be installed graph.visualize()
model = rfm.KumoRFM(graph) # Forecast 30-day product demand query1 = "PREDICT SUM(orders.price, 0, 30, days) FOR items.item_id=1" result1 = model.predict(query1) display(result1) # Predict customer churn query2 = "PREDICT COUNT(orders.*, 0, 90, days)=0 FOR users.user_id IN (42, 123)" result2 = model.predict(query2) display(result2) # Item recommendation query3 = "PREDICT LIST_DISTINCT(orders.item_id, 0, 30, days) RANK TOP 10 FOR users.user_id=123" result3 = model.predict(query3) display(result3) # Missing value imputation query4 = "PREDICT users.age FOR users.user_id=8" result4 = model.predict(query4) display(result4)