Fine-grained control over encoders, training strategy, and the AutoML search space.
Suggest Edits
activation
aggregation
channels
handle_new_target_entities
module
normalization
num_post_message_passing_layers
num_pre_message_passing_layers
ranking_embedding_loss_coeff
output_embedding_dim
target_embedding_mode
use_seq_id
distance_measure
max_target_neighbors_per_entity
num_neighbors
base_lr
batch_size
early_stopping
lr_scheduler
majority_sampling_ratio
max_epochs
max_steps_per_epoch
max_test_steps
max_val_steps
weight_decay
weight_mode
refit_full
refit_trainval
run_mode
metrics
num_experiments
tune_metric
entity_candidate_aggregation
forecast_length
forecast_type
lag_timesteps
split
timeframe_step
train_end_offset
train_start_offset